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1.1. For the mass and spring discussed (1.1)-(1.8), suppose that the system is
hung vertically in the earth’s gravitational field, with the top of the spring
held fixed. Show that the frequency for vertical oscillations is given by
(1.5). Explain why gravity has no effect on the angular frequency.

For a vertical mass-spring system in a gravitational field, the spring stretches
by x0 = mg

k to balance gravity. Displacing the mass by x from this new
equilibrium position, the total restoring force is:

Ftotal = −k(x0 + x) +mg = −kx

This shows the restoring force is the same as in a horizontal system, and
the equation of motion remains:

mẍ = −kx

Thus, the angular frequency is

ω =

√
k

m

Gravity only shifts the equilibrium position but doesn’t affect the restoring
force, so the frequency is the same as in the absence of gravity.

1.2.a. I’m not typing this out.

1.3. Suppose that z1 and z1, two points in the complex plane, correspond to
two vertices of an equilateral triangle. Show that the third vertex is given
by z3 = −ζz1 − ζ2z2, with ζ3 = 1 a cube root of unity.

The cube root of unity aligned w.r.t. ζ3 = 1 contains the following scalars:{
ζ1, ζ2, ζ3

}
=

{
exp

(
2kπi

3

)}
=

{
−1 + i

√
3

2
,
−1− i

√
3

2
, 1

}

For any non-zero zk, l = |z1| = |z2| = |z3|, since all points on an equilateral
triangle are equidistant. Therefore,

l = ζl − ζ2l =⇒ 1 = −ζ − ζ2 = −−1 + i
√
3

2
− −1− i

√
3

2

1 = 1 ■
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Info for 1.4. A block of mass M slides without friction between two springs of spring
constant K and 2K, as shown (omitted). The block is constrained to
move only left and right on the paper, so the system has only one degree
of freedom.

1.4.a. Calculate the oscillation angular frequency.

The effective spring coefficient is Keff = K + 2K because the springs are
in series. The frequency is found with the equation,

ω =

√
Keff

m
=⇒

√
3K

m

1.4.b. If the velocity of the block when it is at its equilibrium position is v,
calculate the amplitude of the oscillation.∑

E =
1

2
Mv2 =

1

2
KeffA

2 =
3K

2
A2

Solving for A yields:

1

2
Mv2 =

3K

2
A2 =⇒ A =

√
Mv2

3K

Info for 1.5. A particle of mass m moves on the x axis with potential energy

V (x) =
E0

a4
(
x4 + 4ax3 − 8a2x2

)
.

1.5.a. Find the positions at which the particle is in stable equilibrium.

Stable equilibrium is defined as a potential well. So, you find solutions for

0 = dV
dt and ensure d2V

dt2 > 0. This turns out to be

x = {−4a, a}

1.5.b. Find the angular frequency of small oscillations about each equilibrium
position. What do you mean by small oscillations? Be quantitative and
give a separate answer for each point of stable equilibrium.

By small oscillations, I think they mean oscillations at the limit of each
solution. We cannot have any oscillations at stable equilibrium because

the system is stationary. Since k = mω2 and Keff = d2V
dt2 at equilibrium,

we yield

ω(x) = {−4a, a} 7→

{√
80E0

ma2
,

√
20E0

ma2

}
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Info for 1.6. A puck of mass m slides without friction on a flat table.

There is a small hole in the table, and a massless inextensible string passing
through the hole connects the puck to a block, also of mass m, that hangs
below the table.

1.6(a). At t = 0 the block is instantaneously at rest, and the puck is given a
push that sets it into instantaneously circular motion about the hole. For
what value ωeq of the angular frequency ω of this motion does the system
remain in equilibrium, with the puck revolving at a fixed radius.

Centripetal motion (and force) provides us:

Fc =
mv2

r
= mrω2

because ω = v
r . We also know T = mg. Since the system is at equilibrium,

Fnet = 0 so:
Fnet = mreqω

2
eq −mg.

Simple algebra yields us

g = reqω
2
eq =⇒ ωeq =

√
g

req
.

1.6(b). Assume the puck is revolving at ω = ωeq, and the block is hanging at a
fixed height. At t = t1 an external force gives the block a quick, small
downward tug. Find the frequency of the resulting small oscillations.

At equilibrium, we know that:

Teq = mg⃗ = mreqω
2
eq =⇒ ωeq =

√
g

req

Now, let us consider a small downward displacement, δr. This tug modifies
the radius of the circular motion, so

r = req − δr.

I justify using a negative symbol, because it is a tug downwards. To restore
this system to equilibrium, the weights must provide a restorative force
(since that’s the only force acting upon the system). Thus,

Fc = T = m(req − δr)ω2

For the system to maintain angular momentum, r2ω must remain constant
under small osculations. At equilibrium, angular momentum is provided
as:

L = mr2eqωeq

Introducing a perturbation would provide an angular momentum of

L = m(req − δr)2ω.
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Since angular momentum is conserved,

��mr2eqωeq = ��m(req − δr)2ω.

For small δr, (req − δr)2 = r2eq − 2reqδr +���(δr)2 . Plugging this in,

r2eqωeq = (r2eq − 2reqδr)ω.

Solving for ω yields

ω ≈ ωeq

(
1 +

δr

req

)
.

Let’s plug this in to our tension function.

T (r) = mrω2 = m(req − δr)

(
ωeq

(
1 +

δr

req

))2

= mω2
eq(req − δr)

(
1 +

2δr

req
+
�

�
�(δr)2

r2eq

)

= mω2
eq

(
req − δr −

�
�
�2δr2

r2eq
+ 2δr

)
= mω2

eq(req + δr)

Since we know mω2
eqreq = mg as shown in 1.6(a), we find that

T (r) = mg +mω2
eq(δr).

The mg term cancels out when applying T (r) onto Fnet.

Fnet = T (r)−mg = ��mg +mω2
eq(δr)−��mg = mω2

eq(δr).

Since the “tug” acts as a change in position, this system is in acceleration.

Fnet = m(δr̈) = mω2
eq(δr)

Thus, we obtain the equation for a simple harmonic oscillator.

0 = m(δr̈)−mω2
eq(δr)

Since we know k = mω2, and mω2
eq serves as the k term,

mω2 = mω2
eq =⇒ ω = ωeq

The question asks us to find the frequency of the perturbation of r (as
opposed to the angular frequency). Therefore, we need to convert our
answer to a linear expression with the factor ω = 2πf . In conclusion,

f =
1

2π
ωeq ■
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